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ABSTRACT

The existence of Hopf fibrations S2N+1/S1 = CPN and S4K+3/S3 =
HPK allows us to treat the Hilbert space of generic finite-dimensional
quantum systems as the total bundle space with respectively U(1) and
SU(2) fibers and complex and quaternionic projective spaces as base
manifolds. This alternative method of studying quantum states and their
evolution reveals the intimate connection between generic quantum me-
chanical systems and geometrical objects. The exact Abelian and non-
Abelian geometric phases, and more generally the geometrical factors for
open paths, and their precise correspondence with geometric Kähler and
hyper-Kähler connections will be discussed. Explicit physical examples
are used to verify and exemplify the formalism.

1. Introduction

The study of geometric phases in quantum mechanics is a fruitful and active
endeavor (see, for instance Anandan et al. (1997) for a review, and references
therein for a selected sample of the literature and history of the subject). It
reveals that fundamental geometrical structures are present in generic quantum
systems; and the rich and exact interplay that can exist between geometrical
mathematical structures (e.g. Hopf fibrations), physical solitons (monopoles
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and instantons, just to cite lowest dimensional examples) and generic quantum
systems is both fascinating and of great pedagogical value.

The existence of Hopf fibrations S2N+1/S1 = CPN and S4K+3/S3 = HPK

allows us to treat the Hilbert space of generic finite-dimensional quantum sys-
tems as the total bundle space with respectively U(1) and SU(2) fibers and
complex and quaternionic projective spaces as base manifolds. (In the latter
case of quaternionic projective space, only even dimensional systems are per-
mitted). This pedagogical review relies heavily on two recent in-depth studies
of Abelian and non-Abelian geometric phases in quantum mechanics (Lin, 2009;
Wang, 2011). Previously Aharonov-Anandan presented the Abelian geometric
phase as the difference between the total and dynamical phase (Aharonov and
Anandan, 1987), and Page formulated the result in terms of complex projec-
tive Hopf fibrations (Page, 1987). Non-Abelian geometric phases were also
discussed in terms of Hopf fibrations by Adler and Anandan (1996). A general
discussion on Hopf fibrations can be found in Trautman (1977). The method of
using Hopf fibrations to study quantum states and their evolution reveals the
intimate connection between generic quantum mechanical systems and geomet-
rical objects. The exact Abelian and non-Abelian geometric phases, and more
generally the geometrical factors for open paths, and their precise correspon-
dence with geometric Kähler and hyper-Kähler connections will be discussed.
The emphasis here is on the applicability of the formulation to generic finite-
dimensional systems and on the exactness of the resultant geometric phases.
Explicit physical examples are used to verify and exemplify the formalism.

2. Hilbert space of finite-dimensional quantum
systems and Hopf fibrations

Consider the Hilbert space of an arbitrary “(N +1)-state” pure system: Let
{|α〉}, α = 0, 1, · · · , N be a time-independent orthonormal basis. An arbitrary
normalized state may be expressed as:

|Ψ〉 =
zα√
z̄βzβ

|α〉 ≡ cα|α〉; (1)

wherein ~z(t) = (z0(t), z1(t), · · · , zN (t)) ∈ CN+1 − {0}. Writing the complex
coefficients cα = xα + iyα as real numbers xα ∈ R and yα ∈ R, and noting the
normalization condition,

1 =
N∑

α=0

|cα|2 =
N∑

α=0

[
(xα)2 + (yα)2

]
, (2)
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lead to the conclusion of the correspondence {cα} ⇔ {xα, yα} ∈ S2N+1. Thus
the Hilbert spaces of respectively 2-state, 3-state, 4-state, 5-state, · · · systems
are associated with S3, S5, S7, S9, · · · , i.e. odd-dimensional spheres which have
very special properties! Besides the simple Hopf fibration SM/ {+1,−1} =
RPM over M-dimensional real projective space and the octonionic Hopf fi-
bration S8L+7/S7 = OP 1 = S8, the other two series of Hopf fibrations over
complex and quaternionic projective spaces are of great interest. These are the
complex Hopf fibrations: S2N+1/S1 = CPN over N-dimensional complex pro-
jective spaces (e.g. S3/S1 = [CP 1 = S2] (Dirac monopole)), and the quater-
nionic Hopf fibrations: S4K+3/S3 = HPK over K-dimensional quaternionic
projective spaces (e.g. S7/[S3 = SU(2)] = [HP 1 = S4] (BPST instanton)).

3. Complex Hopf fibration over CPN and exact
Abelian geometric phase

Complex projective spaces CPN are defined as spaces of ~z modulo the
equivalence relation ~z(t) ∼ λ(t)~z(t);λ ∈ C − {0} i.e. with (z0, z1, · · · , zN ) and
(λz0, λz1, · · · , λzN ) identified. In any local patch or chart U(η) wherein zη 6= 0,
the inhomogeneous coordinates ζα(η)(t) = zα(t)/zη(t) are well-defined, and we
can pass from homogeneous coordinates zα to ζα which is explicitly invariant
under the complex λ scaling. The Hopf projections for CN+1−{0} → S2N+1 →
CPN can be explicitly realized by

zα → cα ≡ zα√
z̄βzβ

→ cα/c0 = zα/z0 = ζα(η=0); (3)

with each projection specified in local chart U (η=0) and extended to the atlas of
all charts, ∪U (η). This constitutes an explicit Hopf map of the S2N+1 bundle
over CPN base manifold with U(1) fiber.

The exact formula of geometric factor in quantum mechanics can be obtained
from the following considerations: Locally, S2N+1 ∼

{
part of CPN

}
× S1 and

we may express |Ψ〉 in local coordinates. In the local patch U (0) wherein
ζα = zα/z0, and eiφz0 ≡ z0/|z0| lead to

|Ψ〉 =
zα√
z̄βzβ

|α〉 = cα|α〉 = eiφz0
ζα√
ζ̄βζβ

|α〉. (4)

Substituting into the Schrodinger equation, i~ d
dt |Ψ〉 = H(t)|Ψ〉 yields

dφz0

dt
+
ζ̄α(dζα/dt)− ζα(dζ̄α/dt)

2iζ̄βζβ
= − ζ̄

αHαβζ
β

~(ζ̄ηζη)
. (5)

Malaysian Journal of Mathematical Sciences 87



i
i

“mjms-chopinsoo” — 2014/7/21 — 14:19 — page 88 — #4 i
i

i
i

i
i

Chopin Soo Huei-Chen Lin

Identifying A ≡ ζ̄α(dζα/dt)−ζα(dζ̄α/dt)

2iζ̄βζβ
dt implies the overall phase can be solved

as

φz0(t) = φz0(0)− (

∫ ζ(t)

ζ(0)

A)− 1

~

∫ t

0

〈Ψ|H|Ψ〉dt. (6)

It follows that the generic state is expressible, in terms of ζ-coordinates of CPN
and the phase φz0 , as

|Ψ(t)〉 =
zα(t)√
z̄β(t)zβ(t)

|α〉 = eiφz0 (t) ζα(t)√
ζ̄β(t)ζβ(t)

|α〉. (7)

Moreover, in the overlap U(η) ∩ U(ξ) , we have ζα(ξ) = zα/zξ = (zη/zξ)ζα(η)∀α,
and the transition function (zξ/zη) ≡ Reiφ ∈ C1. The geometric connection is
thus revealed to be

A ≡ −i ζ̄
α dζα − ζαdζ̄α

2ζ̄βζβ
= −i ζ̄

i dζi − ζidζ̄i
2(1 + ζ̄jζj)

, j = 1, 2, ...N ; (8)

which is an Abelian connection whose curvature is F = dA = 2K, wherein K
is the Kähler 2-form (which is real and closed (dK = 0)), while CPN which is
a Kähler-Einstein manifold with the Fubini-Study metric.

The preceding formulas straightforwardly imply that the overlap function at
different times is given by

〈Ψ(T )|Ψ(o)〉 =
ζ̄α(T )ζα(o)

[ζ̄β(T )ζβ(T )]
1
2 [ζ̄κ(o)ζκ(o)]

1
2

e−i(φz0 (T )−φz0 (o))

=
ζ̄α(T )ζα(o)

[ζ̄β(T )ζβ(T )]
1
2 [ζ̄κ(o)ζκ(o)]

1
2

× exp

(
i

∫ ζ(T )

ζ(o)

A+
i

~

∫ T

o

〈Ψ(t)|H(t)|Ψ(t)〉dt
)
. (9)

By subtracting
∫ T
o
〈Ψ(t)|H(t)|Ψ(t)〉dt which is referred to as the "dynamical

phase", the geometric phase factor is the residual entity in the overlap function.
In the special case of a closed path c = ∂S bounding a two-surface S, ζα(T ) =
ζα(o) (closed path means the wave function at o and T differs by only a total
phase⇐⇒ ζα(T ) = ζα(o)∀α), the geometric phase factor with ζα(η=0) = zα/z0;
ζ0
(η=0) = 1 results in the geometric phase

arg[ei
∮
c=∂S

A] = arg
[

exp
( ∮

c

ζ̄i dζi − ζidζ̄i
2(1 + ζ̄jζj)

)]
=

∫

S

F. (10)
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A note on the gauge symmetry of the geometric phase:

There are two connections: 〈Ψ(t)| ddt |Ψ(t)〉dt, and the Kähler connection
A ≡ −i ζ̄α dζα−ζαdζ̄α

2ζ̄βζβ
. They are related by

〈Ψ(t)| d|Ψ(t)〉 = A(η) + dφ(η)(t); (11)

wherein φ(η) = zη/|zη|. The L.H.S begets additional term dχ(t) under |Ψ(t)〉 7→
eiχ(t)|Ψ(t)〉. Consistently, on the R.H.S. φ(η)(t) 7→ φ(η)(t) + χ(t). But A(ζ)
remains explicitly unchanged (an overall scaling for all zα does not change ζα ≡
zα/zη)! In other words, despite the similarities with the approach by Aharonov
and Anandan (1987), the Kähler potential A does not gauge the symmetry
|Ψ(t)〉 7→ eiχ(t)|Ψ(t)〉 (which Aharonov-Anandan advocated (Aharonov and
Anandan, 1987)). Rather, the Kähler connection A transforms as an Abelian
U(1) gauge potential under local coordinate transformations between patches
and gauges this symmetry. In the overlap U(η) ∩ U(ξ), the coordinates are
related by ζα(ξ) = zα/zξ = (zα/zξ)ζα(η)∀α; thus the transition function is just
(zξ/zη) ≡ Reiχ ∈ C1. Under this change of coordinates, the connection A =

−i ζ̄αdζα−ζαdζ̄α
2ζ̄βζβ

transforms as A 7→ A′ = A + dχ. The geometric phase/factor
and the state remain invariant under such coordinate transformations between
different patches.

4. Explicit examples

Generic qubit systems, S3/S1 = CP 1, and the Dirac monopole:

A generic qubit (or a 2-state) system corresponds to the Hopf fibration
S3/[U(1) = S1] = [CP 1 = S2]. For the qubit system, the state is

|Ψ〉 =
1∑

α=0

cα|α〉 =
1∑

α,β=0

eiφz0
ζα√
ζ̄βζβ

|α〉. (12)

The explicit parametrization c0 = ei(χ−
φ
2 ) cos( θ2 ) and c1 = ei(χ+φ

2 ) sin( θ2 ) with
|c0|2 + |c1|2 = 1, leads to the Hopf map projection

cα(χ, θ, φ)→ ζα ∈ CP 1 : ζ0 = c0/c0 = 1, ζ1 = c1/c0 = eiφ tan(
θ

2
). (13)

The geometric Kähler connection computed in accordance with our previous
discussion is

A =
ζ̄1dζ1 − ζ1dζ̄1

2i(1 + ζ̄1ζ1)
=

1

2
(1− cos θ)dφ, eiφz0 = z0/|z0| = c0/|c0| = ei(χ−

φ
2 ), (14)
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which is precisely the gauge potential for a Dirac monopole connection with
Chern number

1

2π

∫
F =

1

2π

∫
dA =

1

2π

∫ π

θ=0

∫ 2π

0

1

2
sin θdθ ∧ dφ = 1. (15)

Note also that the local chart fails at the south pole θ = π where c0 vanishes,
and we need more than one patch for the atlas. A chart which fails only at
the north pole (θ = 0) is ζα(η=1) = cα/c1. In the overlap U (0)

⋂
U (1), we have

ζα(0) = (c1/c0)ζα(1) with transition function (c1/c0) = eiφ tan( θ2 ). Moreover, the
phase of the coordinate transition function eiφ tan( θ2 ) is precisely φ ; hence
following our discussions in section VII, A(0) = A(1) + dφ = A(1) + eiφide−iφ.
The monopole charge can also be deduced, via the Wu-Yang formulation, from
the Π1(U(1)) homotopy map of the transition function, eiφ : φ ∈ S1 → eiφ ∈
U(1) = S1, which has winding number 1. Note the distinction between the
Wu-Yang transition function relating the monopole potentials A(0) and A(1)

(which are connected by gauge transformation eiφ ∈ U(1)) and the transition
function eiφ tan( θ2 ) between coordinate patches which is a complex scaling. Re-
markably the setup in the previous sections yield these results self-consistently.
Furthermore, according to the rules of the formalism, the general state is

|Ψ(t)〉 =
zα(t)√
z̄β(t)zβ(t)

|α〉 = eiφz0 (t) ζα(t)√
ζ̄β(t)ζβ(t)

|α〉

=
eiφz0 (t)

√
(1 + tan2(θ/2)

[
|0〉+ eiφ tan(θ/2)|1〉

]

= eiφz0 (t)[cos(θ(t)/2)|0〉+ eiφ(t) sin(θ(t)/2)|1〉]. (16)

It should be noted that in addition to the (θ, ϕ) Bloch sphere characterization
of the usual 2-state density matrix, the quantum state depends additionally on
eiφz0 which contains the geometric phase and connection.

A 2-state subsystem of the harmonic oscillator:

A very simple example is the time-independent harmonic oscillator with
Hamiltonian and eigenvalues, H = p2/2m + 1

2mω
2x2; En =

(
n+ 1

2

)
~ω. If

we are restricted to a normalized 2-state basis |n = 0〉 and |n = 1〉, it follows
that |Ψ(0)〉 = cos(θ/2)|0〉+ sin(θ/2)|1〉; and

|Ψ(t)〉 = e−
i
~Ht|Ψ(0)〉 = cos(θ/2)e−

iωt
2 |0〉+ sin(θ/2)e−

3iωt
2 |1〉

= e−
iωt
2

[
cos(θ/2)|0〉+ sin(θ/2)e−iωt|1〉

]
. (17)

Thus we read off φz0 = −ωt2 ; φ = −ωt; A = −dφz0 + dχ − 1
2 cos θdφ. At

time t = T = 2π/ω, we then have |Ψ(t = 2π/ω)〉 = e−iπ|Ψ(0)〉. Fur-
thermore,

∫ t=2π/ω

0
A =

∫ 2π/ω

0
ω
2 dt − ωdt + 1

2 (cos θ)ωdt = π(cos θ − 1) and
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1
~
∫ t=2π/ω

0
〈Ψ(t′)|H|Ψ(t′)〉dt′ = (2 − cos θ)π. It can also be verified explicitly

that these results confirm the general formula

〈Ψ(T )|Ψ(o)〉 =
ζ̄α(T )ζα(o)

[ζ̄β(T )ζβ(T )]
1
2 [ζ̄κ(o)ζκ(o)]

1
2

e−i(φz0 (T )−φz0 (o))

=
ζ̄α(T )ζα(o)

[ζ̄β(T )ζβ(T )]
1
2 [ζ̄κ(o)ζκ(o)]

1
2

× exp

(
i

∫ ζ(T )

ζ(o)

A+
i

~

∫ T

o

〈Ψ(t)|H(t)|Ψ(t)〉dt
)
. (18)

Arbitrary spin J system in a rotating magnetic field:

Consider, as shown in the figure below, a particle of angular momentum J
in a rotating magnetic field ~B = B(sinα cosωt, sinα sinωt, cosα) inclined at
angle α with respect to the z-axis.

B 

Figure 1: The rotating magnetic field.

The time-dependent Hamiltonian of the system has the form

H(t) = −µB(sinα cosωtJ1 + sinα sinωtJ2 + cosαJ3),

with H(0) = −µB(sinαJ1 + cosαJ3). Furthermore, the Hamiltonian

H(t) = V †H(0)V = e−iωtJ3 [−µB(sinαJ1 + cosαJ3)]eiωtJ3 ; V = eiωtJ3 (19)

does not commute at different times; and the evolution of the state is governed
by |Ψ(t)〉 = U(t)|Ψ(0)〉, i~ d

dt |Ψ(t)〉 = H(t)|Ψ(t)〉 with time-ordered evolution
operator, U(t) = T [exp(− i

~
∫ T

0
H(t′)dt′)]. This implies,

H(0) = V H(t)V † = V

[
i~(

d

dt
U)U†

]
V † = i~(−iωJ3) + i~(

d

dt
V U)(V U)†; (20)

Malaysian Journal of Mathematical Sciences 91
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with

U(t) = V † exp

{
i
[µB

~
sinαJ1 + (

µB

~
cosα+ ω)J3

]
t

}

= V † exp {i[Ω tanβJ1 + ΩJ3]t} .

It can be worked out that the unitary evolution operator (for arbitrary J) takes
the form

(U)MM ′ =

〈
J,M |V † exp

{
i
[µB

~
sinαJ1 + (

µB

~
cosα+ ω)J3

]}
|J,M ′

〉

= (e−
iωtJz

~ e−
iJzγ

~ e−
iJyβ

′
~ e−

iJzα
′

~ )MM ′

= e−i[Mωt+(M+M ′)γ](cos
β′

2
)M+M ′(sin

β′

2
)M−M

′

· (−1)M−M
′
eiM

′π
[ (J −M)!(J −M ′)!

(J +M)!(J +M ′)!

] 1
2

·
2J∑

n=0

(−1)n
(J +M + n)!

(J −M − n)!(M −M ′ + n)! n!
(sin

β′

2
)2n ; (21)

wherein

sin
β′

2
= sinβ sin

ϑt

2
,

cos
β′

2
=

√
cos2

ϑt

2
+ cos2 β sin2 ϑt

2
,

sin γ =
cos ϑt2√

cos2 ϑt
2 + cos2 β sin2 ϑt

2

,

cos γ =
cosβ sin ϑt

2√
cos2 ϑt

2 + cos2 β sin2 ϑt
2

,

ϑ =
Ω

cosβ
,

α′ = γ − π . (22)

Qubit spin 1/2 system in rotating magnetic field:

Specializing to a spin 1/2 or 2-state system in a rotating magnetic field, the
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evolution operator is then

U(t) =

(
e−

iωt
2

(
cos ϑt2 + i cosβ sin ϑt

2

)
e
−iωt

2

(
i sinβ sin ϑt

2

)

e
iωt
2

(
i sinβ sin ϑt

2

)
e
iωt
2

(
cos ϑt2 − i cosβ sin ϑt

2

)
)
.

(23)

As an example, the choice of the initial state |Ψ(0)〉 =

(
1
0

)
, and |Ψ(t)〉 =

U(t)|Ψ(0)〉 yield the following results:

A = A(1) =
1

4
(2ϑ cosβ

−ω(3 + cos(2β) + 2 cos(ϑt) sin2 β)
)
dt, (24)

1

~
〈Ψ(t)|H(t)|Ψ(t)〉 =

1

2
(−ϑ cosβ + ω cos2 β

+ω cosϑt sin2 β), t 6= 0, (25)

A+
1

~
〈Ψ(t)|H(t)|Ψ(t)〉dt = −ω

2
dt; (26)

〈Ψ(T )|Ψ(t)〉 = e−
1
2 i(t+T )ω

{
eitω sin2 β sin

ϑt

2
sin

ϑT

2
+

eiTω
(

cos
ϑt

2
+ i cosβ sin

ϑt

2

)

·
(

cos
ϑT

2
− i cosβ sin

ϑT

2

)}
(27)

ζ̄α(T )ζα(t)

[ζ̄β(T )ζβ(T )]
1
2 [ζ̄κ(t)ζκ(t)]

1
2

= sin2 β · sin ϑt
2
· sin ϑT

2
+

e−i(t−T )ω

(
cosβ sin

ϑt

2
− i cos

ϑt

2

)

(
cosβ sin

ϑT

2
+ i cos

ϑT

2

)
. (28)

It can again be checked from these that the formula

〈Ψ(T )|Ψ(t)〉 =
ζ̄α(T )ζα(t)

[ζ̄β(T )ζβ(T )]
1
2 [ζ̄κ(t)ζκ(t)]

1
2

ei
∫ T
t (A+ 1

~ 〈Ψ(t)|H(t)|Ψ(t)〉dt) ,

is satisfied.

Qutrit 3-state system:

Malaysian Journal of Mathematical Sciences 93
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A 3-state J = 1 system placed rotating magnetic field has evolves in accor-
dance with

U(t) =




− cos2 β′

2 e
−i(2γ+ωt) − 1√

2
sinβ′e−i(γ+ωt) − sin2 β′

2 e
−iωt

− 1√
2

sinβ′e−iγ cosβ′ 1√
2

sinβ′eiγ

− sin2 β′

2 e
iωt 1√

2
sinβ′ei(γ+ωt) − cos2 β′

2 e
i(2γ+ωt)


 . (29)

For arbitrary initial state to return to original value modulo an overall phase
(i.e. closed path in CP 2) after time T, the conditions

ωT = 2π; ϑT = 2mπ m = 1, 2, 3, · · · (30)

must be satisfied. We consider some specific cases as illustrations:
Case (1): Let ~ω

µB = 1√
26−5

√
2
, and ~ϑ

µB = 5√
26−5

√
2
. In this case, tanβ is

chosen to be 1, and ϑ = 5ω. Thus m = 1 and n = 5 and the periodicity
conditions are satisfied. The expectation value 〈Ψ(t)|−→J |Ψ(t)〉 with initial state
〈m = 1, 0,−1|Ψ(0)〉 = (0, 1√

2
, 1√

2
) is plotted in Fig.(2). Since in this case the

final state differs from the initial state by an overall phase, 〈Ψ(t)|−→J |Ψ(t)〉 must
be closed. And it is.
Cases (2) and (3): We next choose ~ω

µB = 1√
7
2−
√

5
and ~ϑ

µB =
√

5
2( 7

2−
√

5)
.

The irrational ratio for ϑ
ω implies that states with this configuration do not

obey the periodicity conditions. For the same initial state as in Case (1),
the evolution for two different final times T are plotted in Fig.(3) and Fig.(4).
As expected, 〈Ψ(t)| ~J |Ψ(t)〉 does not describe closed paths in either instance,
implying that the state cannot differ by just an overall phase after time T when
the periodicity conditions are not satisfied.

Qutrit 3-state system and S5/S1 = CP 2 fibration:

It should be mentiond that a generic 3-state system corresponds to the Hopf
fibration S5/S1 = CP 2. The state can be expressed as |Ψ〉 = c0|0〉 + c1|1〉 +
c2|2〉, and explicit parametrization of S5 by c0 = ei(χ+φ) cos(θ1/2), c1 =
ei(χ−φ) sin(θ1/2) cos(θ2/2), c2 = ei(φ3) sin(θ1/2) sin(θ2/2), lead to

ζ0
(0) = 1, ζ1

(0) = e2iφ tan(θ1/2) cos(θ2/2),

ζ2
(0) = eiγ tan(θ1/2) sin(θ2/2), γ ≡ φ3 − χ+ φ. (31)

From these, it can be computed that

A =
1

4
(1− cos θ1) [d(2φ+ γ) + cos θ2d(2φ− γ)] ,
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Figure 2: 〈Ψ(t)| ~J|Ψ(t)〉 from t = 0 to t = 2π
ω with ϑ = 5ω.
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Figure 3: 〈Ψ(t)| ~J|Ψ(t)〉 from t = 0 to t = 2
√

2π
ω .
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Figure 4: 〈Ψ(t)| ~J|Ψ(t)〉 from t = 0 to t = 30 · 2π
ω .

and its curvature 2-form

F =
1

2π
sin θ1dθ1 ∧

[
2 cos2(θ2/2)dφ+ sin2(θ2/2)dγ

]

−(1− cos θ1) sin θ2dθ2 ∧ d(2φ− γ) = ∗F. (32)

Moreover, it can be checked that integrated over the entire 4-dimensional CP 2

manifold the self-dual curvature F yields 1
4π2

∫
CP 2 F ∧ F = +1.

5. Quaternionic Hopf fibration and non-Abelian
geometric phase factor

In a manner analogous to the construction of Hopf fibration over complex
projective space, the formalism for quaternionic projective space can be ob-
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tained by studying the geometry of S4K+3/[S3 = SU(2)] = HPK , but with
the caveat that it is applicable only to finite-dimensional systems with even
number of states. The reason is that each quaternion has to be associated with
a pair of complex state coefficients. Starting with a generic state as

|Ψ〉 =
N=2K+1∑

a=0

Ca|a〉; Ca =
N∑

b=a

za√
zbz̄b

; (33)

we may defined the associated quaternions through

qα = Re(zα)I2 + Im(zα)
σ1

i
+Re(zα)

σ2

i
+ Im(zα)

σ3

i
;

α = 0, 1, · · · ,K, α ≡ α+K + 1 σ1,2,3 = Pauli matrices. (34)

It follows that

|Ψ〉 =
K∑

α=0

Tr
(
P−1 Q

α
)
|α〉+ Tr

(
P+

1 (iσ2)Qα
)
, Qα ≡ qα√

1
2Tr (qβq†β)

; (35)

with the projector P± = 1
2 (I ± σ1). For the bundle S4K+3/S3 = HPK , the

quaternionic Hopf fibration can be realized through the projection HK+1 −
{0} → S4K+3 → HPK which is

qα → Qα =
qα√
qβq†β

→ Qα/Qη = qα/qη = hα(η),
∑

α

|Qα|2 = 1; (36)

in each local chart U (η) and extended to the atlas ∪U (η). The resultant hα ∈
HPK are precisely the inhomogeneous coordinates of HPK . In U (0), hα ≡
(q0)−1qα = (Q0)−1Qα, ∀0 ≤ α ≤ K. It follows that the expression for the
state expressed in terms of local HPK coordinates and the fiber (which is the
unit quaternion q̂0 ≡ q0/

∣∣q0
∣∣ ∈ SU(2) = S3) is thus

|Ψ〉 =

K∑

α,β=0

Tr(P−1 q̂
0hα) |α〉+ Tr(P+

1 (iσ2)q̂0hα) |α〉√
1
2Tr(h

βh†β)
. (37)

By substituting into the Schrodinger equation, we can similarly obtain the
evolution of the non-Abelian phase factor

q̂0(t) = T e i~
∫ t
0
Hdtq̂0(0)[T e−i

∫ t
0
Adt]†; (38)

wherein A = Adt = hα(dh†α)/(dt)−(dhα)/(dt)h†α

iTr(hβh†β)
dt is the associated non-Abelian

connection. The connection −A = AHPK = dhαh†α−hαdh†α
iTr(hβh†β)

is also the (quater-
nionic) Kähler connection of the quaternionic Kähler manifold HPK . The
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overlap function at different times can be computed to be (analogous to the
result of Eq. (9))

〈Ψ(T )|Ψ(0)〉 = Tr


 h†α(T )√

1
2Tr(h

β(T )h†β(T ))
T e−i

∫ T
0
Adtq̂†0(0)[T e i~

∫ T
0
Hdt]†

P−1 q̂
0(0)

hα(0)√
1
2Tr(h

γ(0)h†γ(0))


 ; (39)

wherein

i

~
H ≡ i

~

(
Re
〈
Ψ⊥|H|Ψ

〉
〈Ψ|H|Ψ〉+ iIm

〈
Ψ⊥|H|Ψ

〉

〈Ψ|H|Ψ〉 − iIm
〈
Ψ⊥|H|Ψ

〉
−Re

〈
Ψ⊥|H|Ψ

〉
)
,

and
∣∣Ψ⊥

〉
=

K∑
α=0

Tr(P−1
σ2

i Q
α) |α〉 + Tr(P+

1 Q
α) |α〉. This is the complete and

exact result revealing the SU(2) geometric phase factor of arbitrary finite even-
dimensional pure systems.

5.1 Explicit Example: Generic Four-State Systems and
the BPST instanton

A generic pure 4-state system is associated with the quaternionic Hopf
fibration, S7/SU(2) = HP 1 = S4 . Parametrization of S7 can be achieved in
terms of two quaternions S7 ∼ (Q0, Q1) satisfying

∣∣Q0
∣∣2 +

∣∣Q1
∣∣2 = 1. These

can in turn be explicitly written as Q0 = u cos θ2 , Q
1 = uv sin θ

2 , with

u =

(
ei(γ1+β1)/2 cos α1

2 ei(γ1−β1)/2 sin α1

2

−e−i(γ1−β1)/2 sin α1

2 e−i(γ1+β1)/2 cos α1

2

)
,

v =

(
ei(γ2+β2)/2 cos α2

2 ei(γ2−β2)/2 sin α2

2

−e−i(γ2−β2)/2 sin α2

2 e−i(γ2+β2)/2 cos α2

2

)
, (40)

being SU(2) matrices. This yields,

|Ψ〉 =
1∑

α,β=0

Tr(P−1 q̂
0hα) |α〉+ Tr(P+

1 (iσ2)q̂0hα) |α〉√
1
2Tr(h

βh†β)
, (41)

and the non-Abelian connection corresponds exactly to the BPST instanton
(Belavin et al., 1975) gauge potential AHP 1 = dhαh†α−hαdh†α

iTr(hβh†β)
= −i sin2 θ

2dvv
†.

The parameter θ is related to the distance |x| from the instanton center by
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sin2
(
θ
2

)
= |x|2 /

(
|x|2 + Λ2

)
. The second Chern number is computed to be

C2 = − 1
8π2

∫
S4 Tr(F∧F) = 1

8π2

∫
S4

sin3 θ
4 dθ∧Tr(dvv†)3 = 1

24π2

∫
S3 Tr(dvv

†)3 =
1.

Pure state bipartite qubit-qubit entanglement and the BPST
instanton

A bipartite qubit-qubit system is an example of a composite 4-state system.
In general the qubit-qubit system may be written as |Ψ〉 = cij |i〉|j〉, where i, j
takes value ±. A quantitative measure of the pure qubit-qubit state entangle-
ment is provided by the expectation value of the Clauser-Horne-Shimony-Holt
operator(Clauser et al., 1969) which is

CHSH = (R+ S)⊗ T + (R− S)⊗ U ; (42)

wherein R = ~̂r ·σ with ~̂r being a unit spatial vector, and similarly the operators
S, T and U . The expectation value of the CHSH operator depends on the state
and also the directions of the unit vectors; but the maximum value(Neo, 2005)

is correlated to the entanglement by 〈Ψ|CHSH|Ψ〉max. = 2

√
1 + 4 |det c|2,

with 0 ≤ |det c|2 ≤ 1
4 ; wherein det c denotes the determinant of the 2× 2 state

coefficient matrix cij . Comparing with our generic 4-state system,

|Ψ(t)〉 =
3∑

a=0

Ca|a〉

=
1∑

α,β=0

Tr(P−1 q̂
0(t)hα(t)) |α〉+ Tr(P+

1 (iσ2)q̂0(t)hα(t)) |α〉√
1
2Tr(h

β(t)h†β(t))
,

Q0 = u cos
θ

2
,

Q1 = uv sin
θ

2
; (43)

98 Malaysian Journal of Mathematical Sciences



i
i

“mjms-chopinsoo” — 2014/7/21 — 14:19 — page 99 — #15 i
i

i
i

i
i

Exact Abelian and Non-Abelian Geometric Phases

and bearing in mind qα = Re(zα)I2 + Im(zα)σ
1

i +Re(zα)σ
2

i + Im(zα)σ
3

i , the
four state coefficients Ca of the composite system can be computed to be

C0 = cos
θ

2
cos

α1

2
ei(γ1+β1)/2,

C1 = sin
θ

2

(
ei(γ1+γ2+β1+β2)/2 cos

α1

2
cos

α2

2

−ei(γ1−γ2−β1+β2)/2 sin
α1

2
sin

α2

2

)
,

C2 = cos
θ

2
sin

α1

2
ei(γ1−β1)/2,

C3 = sin
θ

2

(
ei(γ1+γ2+β1−β2)/2 cos

α1

2
sin

α2

2

+ei(γ1−γ2−β1−β2)/2 sin
α1

2
cos

α2

2

)
.

A judicious mapping of the bipartite system to the composite system allows
us to correlate the entanglement directly to the instanton parameter θ for
arbitrary qubit-qubit 4-state composite systems. An earlier correlation can be
found in Levay (2004). The general unitary basis transformation between the
two systems, |Ψ〉 = cij |i〉 ⊗ |j〉 = Ca|a〉, is cij = 〈ij|a〉Ca = UaijC

a, wherein

Tr
(
UaU†b

)
= Uaij(U

†b)ji = Uaij(U
b
ij)
∗ = 〈ij|a〉〈b|ij〉 = 〈ij|b〉〈a|ij〉 = δab. (44)

To wit

det c =
1

2
εijεklcikcjl =

1

2
(iσ2)ij(iσ2)klcikcjl =

1

2
Tr(σ2cTσ2c) (45)

=
1

2
Tr(σ2(UaCa)Tσ2(U bCb)) =

1

2
Tr(σ2(Ũa)Tσ2Ũ b)|Ca||Cb|;

wherein we have defined Ũa ≡ eiφaUa satisfying

Tr(ŨaŨ†b) = ei(φa−φb)Tr(UaU†b) = ei(φa−φb)δab = δab.

The choice of Ũa = ua σ
a
√

2
(no sum over a) with u0 = i, u1 = 1, u2 = i, u3 = 1

yields the desired result

det c = −1

4
Tr((σa)†σb)uaub|Ca||Cb|

= −1

2
((u0)2|C0|2 + (u1)2|C1|2 + (u2)2|C2|2 + (u3)2|C3|2)

=
1

2
(|C0|2 + |C2|2 − |C1|2 − |C3|2)

=
1

2
(cos2 θ

2
− sin2 θ

2
)

=
1

2
cos θ. (46)
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This relates the entanglement parameter, det c, to the instanton parameter, θ,
in a generic qubit-qubit system which is considered as a 4-state total system
with the Hilbert space S7 which is total bundle space of the Hopf fibration
S7/[SU(2) = S3] = [HP 1 = S4].

6. Summary

The existence of Hopf fibrations S2N+1/S1 = CPN and S4K+3/S3 = HPK

allows us to treat the Hilbert space of generic finite-dimensional quantum sys-
tems as the total bundle space with respectively U(1) and SU(2) fibers and
complex and quaternionic projective base manifolds. This alternative method
of studying and describing quantum states and their evolution reveals the inti-
mate and exact connection between generic quantum systems and fundamental
geometrical objects.
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